Difference between revisions of "Application of Pit Humus and Compost"

From Akvopedia
Jump to: navigation, search
(References)
 
(23 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<!-- table at top of page with logo, picture, Application level, Management level, and input-output tables -->
+
{|style="float: left;"
{{santable|
+
|{{Language-box|english_link=Application of Pit Humus and Compost|french_link=Application_du_Compost_(Eco-Humus)|spanish_link=Aplicación_de_Composta/EcoHumus|hindi_link=coming soon|malayalam_link=coming soon|tamil_link=coming soon | korean_link=coming soon | chinese_link=Coming soon | indonesian_link=Coming soon | japanese_link=Coming soon}}
 +
|}
 +
{|width="100%"
 +
|style="width:50%;"|{{santable_new|
 
sys1=[[Waterless System with Alternating Pits|2]]|
 
sys1=[[Waterless System with Alternating Pits|2]]|
sys2=|
+
sys2=[[ Pour Flush Pit System without Sludge Production|3]]|
 
sys3=|
 
sys3=|
 
sys4=|
 
sys4=|
Line 9: Line 12:
 
sys7=|
 
sys7=|
 
sys8=|
 
sys8=|
 +
sys9=|
 
pic=Application_of_compost_eco_humus.png|
 
pic=Application_of_compost_eco_humus.png|
 
ApplHousehold=XX|
 
ApplHousehold=XX|
Line 16: Line 20:
 
ManShared=XX|
 
ManShared=XX|
 
ManPublic=X|
 
ManPublic=X|
Input1=Compost/EcoHumus |Input2= |Input3= | Input4= |Input5=|
+
Input1=Compost |Input2=Pit Humus |Input3= | Input4= |Input5=|
Output1=- |Output2= | Output3= | Output4= | Output5=
+
Output1=Biomass |Output2= | Output3= | Output4= | Output5=
 
}}
 
}}
 +
|[[Image:Application_of_compost_eco_humus.png |right|500px]]
 +
|}
 +
<br>
 +
----
 +
<br>
  
 +
[[Image:Icon_application_of_compost_eco_humus.png |right|80px]]
  
[[Image:Compost_as_soil_conditioner.PNG‎|thumb|right|150px|[[Compost as soil conditioner |Compost as soil conditioner]], in Malawi (for credits, click the picture)]]
+
'''Compost is the soil-like substance resulting from the controlled aerobic degradation of organics. Pit humus is the term used to describe the material removed from a double pit technology (S.4, S.5 or S.6) because it is produced passively underground and has a slightly different composition than compost. Both products can be used as soil conditioners.'''
  
'''Decomposed excreta is rich in nutrients (NPK ­ nitrogen, phosphorous, and potassium) and organic material. The organic material in compost acts as soil conditioner. It also improves the structure and water holding capacity of sandy soils and adds structure and permeability to clay soils. Composted excreta, on its own or combined with other biodegradable material, enhances the fertility of topsoil.'''
+
The process of thermophilic composting generates heat (50 to 80 °C) which kills the majority of pathogens present. The composting process requires adequate carbon, nitrogen, moisture, and air. The [[Double Ventilated Improved Pit|Double VIP]] (S.4), [[Fossa Alterna|Fossa Alterna]] (S.5) or [[Twin Pits for Pour Flush|Twin Pits for Pour Flush]] (S.6) are ambient-temperature variations of high-temperature composting. In these technologies, there is almost no increase in temperature because the conditions in the pit (oxygen, moisture, C:N ratio) are not optimized for composting processes to take place. Because of this, the material is not actually ‘compost’ and is, therefore, referred to as ‘pit humus’. The texture and quality of the pit humus depends on the materials which have been added to the excreta (e.g., soil added to a Fossa Alterna) and the storage conditions.  
  
Composting is the term used to describe the controlled aerobic degradation of organics into a soil-like substance called compost. ‘EcoHumus’ is a term taken from Peter Morgan (see references) and is a more appropriate word to use for the material removed from a Fossa Alterna because it is produced passively underground and has a slightly different composition.
+
WHO guidelines on excreta use in agriculture stipulate that compost should achieve and maintain a temperature of 50 °C for at least one week before it is considered safe to use. Achieving this value, however, requires a significantly longer period of composting. For technologies that generate pit humus, a minimum of 1 year of storage is recommended to eliminate bacterial pathogens and reduce viruses and parasitic protozoa. WHO guidelines should be consulted for detailed
 +
information.
  
The process of thermophilic composting generates heat (50 to 80°C) which kills the majority of pathogens present. For the composting process to occur there must be adequate carbon, nitrogen, moisture, and air. The [[Fossa Alterna]] and [[Fill and Cover - Arborloo|Arborloo]] are ambient temperature variations of high-temperature composting. In these technologies, there is almost no temperature rise because vegetable matter is lacking. For that reason, the end material is not actually ‘compost’ and is therefore referred to as ‘EcoHumus’.
+
===Design Considerations===
 +
It has been shown that the productivity of poor soil can be improved by applying equal parts compost and topsoil to it. The output from
 +
one Fossa Alterna should be sufficient for two 1.5 m by 3.5 m beds.
  
The WHO guidelines state that the compost should achieve and maintain a temperature of 50°C for at least one week before it is considered safe (although to achieve this value, a significantly longer period of composting is required). The WHO guidelines should be consulted for detailed information. For systems that generate EcoHumus in-situ (i.e. Fossa Alterna), a minimum of 1 year of storage is recommended to eliminate bacterial pathogens and reduce viruses and parasitic protozoa.
+
{{procontable | pro=
 +
- Can improve the structure and water-holding capacity of soil and reduce the use of chemical fertilizers <br>
 +
- May encourage income generation (improved yield and productivity of plants) <br>
 +
- Low risk of pathogen transmission <br>
 +
- Low costs
 +
| con=
 +
- May require a year or more of maturation <br>
 +
- Social acceptance may be low in some areas <br>
 +
}}
 +
 
 +
===Appropriateness===
 +
Compost and pit humus can be beneficially used to improve the quality of soil. They add nutrients and organics and improve the soil’s ability to store air and water. They can be mixed into the soil before crops are planted, used to start seedlings or indoor plants, or simply mixed into an existing compost pile for further treatment. Vegetable gardens filled with pit humus from the Fossa Alterna have shown dramatic improvements over gardens planted without soil conditioner. The use of pit humus has even made agriculture possible in areas which otherwise would not have supported crops.
  
Compost/EcoHumus can be used beneficially to improve the quality of soils by adding nutrients and organics and improving the soil’s ability to store air and water. The texture and quality of the EcoHumus depends on the materials, which have been added to the excreta (especially the type of soil).
+
===Health Aspects/Acceptance===
 +
A small risk of pathogen transmission exists, but, if in doubt, any material removed from the pit or vault can be further composted in a regular compost heap before being used or mixed with additional soil and put into a ‘tree pit’, i.e., a nutrient-filled pit used for planting a tree. Compost and pit humus should not be applied to crops less than one month before they are harvested. This waiting period is especially important for crops that are consumed raw. As opposed to sludge, which can originate from a variety of domestic, chemical and industrial sources, compost and pit humus have very few chemical inputs. The only chemical sources that could contaminate compost or pit humus might originate from contaminated organic material (e.g., pesticides) or from chemicals that are excreted by humans (e.g., pharmaceutical residues).
  
{{procontable | pro=
+
Compared to the chemicals that may find their way into wastewater sludge, compost and pit humus can be considered as less contaminated. Compost and pit humus are inoffensive, earth-like products. Regardless, people might refrain from handling and using them. Conducting demonstration activities that promote hands-on experience can effectively show their non-offensive nature and their beneficial use.
- Potential income generation (improved yield and productivity of plants). <br> - Low risk of pathogen transmission. <br> - Can improve soil conditions such as the structure and water-holding capacity of soil. <br>Compost reduces the need for artificial fertilizer.<br> - Simple technique for all users. <br> - Low cost. | con=
 
- Requires a year or more of maturation. <br> - Does not replace fertilizer (N, P, K).<br>-Cultural taboos could hinder use. <br>-Health precautions always need to be considered when applying compost enriched with excreta.
 
}}
 
  
 +
===Operation & Maintenance===
 +
The material must be allowed to adequately mature before being removed from the system. Then, it can be used without further
 +
treatment. Workers should wear appropriate protective clothing.
  
==Adequacy==
+
===Field experiences===
Compost/EcoHumus can be mixed into the soil before crops are planted, used to start seedlings or indoor plants or simply mixed into an existing compost pile for further treatment.
 
  
For poor soils, equal parts of compost and top soil have shown to improve productivity. The output from one Fossa Alterna should be sufficient for two 1.5m by 3.5m beds. Vegetable gardens filled with the Eco- Humus from the Fossa Alterna have shown dramatic improvements over gardens planted without compost, and has even made agriculture possible in areas which would have not otherwise supported crops.
+
<br>
 +
{|style="border: 2px solid #e0e0e0; width: 20%; text-align: justify; background-color: #e9f5fd;"  cellpadding="2"
 +
<!--rsr logo here-->
 +
|- style="vertical-align: top"
 +
|[[Image:akvorsr logo_lite.png|center|60px|link=http://akvo.org/products/rsr/]]
 +
<!--project blocks here-->
 +
|- style="vertical-align: bottom"
 +
|[[Image:project 464.png |thumb|center|140px|<font size="2"><center>[http://rsr.akvo.org/project/464/ RSR Project 464]<br>Dutch WASH Alliance in Hararghe & Dire Dawa</center></font>|link=http://rsr.akvo.org/project/464/]]
 +
|}
  
==Health Aspects/Acceptance==
+
<br>
A small risk of pathogen transmission exists, but if in doubt, any material removed from the pit can be composted further in a regular compost heap, or mixed with additional soil and put into a ‘tree pit’, i.e. a nutrient-filled pit used for planting a tree.
 
  
Compost containing excreta should be applied in such a way that the upper layer of the soil covers the material. Note; compost from excreta should not be applied as fertilizer to vegetables eaten raw.
+
===Manuals, videos, and links===
 +
* General information about Compost as soil conditioner [http://www.ecosanres.org www.ecosanres.org]
  
As opposed to sludge, which originates from a variety domestic, chemical and industrial sources, compost has very few chemical inputs. The only chemical sources that could contaminate compost might originate from contaminated organic material (e.g. pesticides) or from chemicals that are excreted by humans (e.g. medication). Compared to the cleaning, pharmaceutical and processing chemicals that may find their way into sludge, compost can be considered as a less contaminated product.
+
* [http://www.who.int/water_sanitation_health/publications/guidelines-on-sanitation-and-health/en/ WHO: Guidelines on sanitation and health - 2018]
  
Acceptability may be low at first, but demonstration units and hands-on experience are effective ways of demonstrating the non-offensive nature of the material.
+
===References===
 +
* Del Porto, D. and Steinfeld, C. (1999). The Composting Toilet System Book. A Practical Guide to Choosing, Planning and Maintaining Composting Toilet Systems, an Alternative to Sewer and Septic Systems. The Center for Ecological Pollution Prevention (CEPP), Concord, MA, US. (Book)
  
==Maintenance==
+
* Jenkins, J. (2005). [http://skrconline.net/content/images/stories/documents/Humanure_Handbook_all.pdf The Humanure Handbook. A Guide to Composting Human Manure]. 3rd Ed. Jenkins Publishing, Grove City, PA, US.
The material must be allowed to mature adequately before it is removed from the system and then it can be used without further treatment.
 
  
==External Links==
+
* Morgan, P. R. (2004). [https://www.susana.org/en/knowledge-hub/resources-and-publications/library/details/986 An Ecological Approach to Sanitation in Africa. A Compilation of Experiences]. Aquamor, Harare, ZW.
* General information about Compost as soil conditioner [http://www.ecosanres.org www.ecosanres.org]
 
  
==References==
+
* Morgan, P. R. (2007). [https://www.susana.org/en/knowledge-hub/resources-and-publications/library/details/195 Toilets That Make Compost. Low-Cost, Sanitary Toilets That Produce Valuable Compost for Crops in an African Context]. Stockholm Environment Institute, Stockholm, SE. pp. 81-90.
* Elizabeth Tilley et.al (2008). [http://www.eawag.ch/organisation/abteilungen/sandec/publikationen/publications_sesp/downloads_sesp/compendium_high.pdf Compendium of Sanitation Systems and Technologies] ([http://www.eawag.ch/organisation/abteilungen/sandec/publikationen/publications_sesp/downloads_sesp/compendium_low.pdf low res version]). Department of Water and Sanitation in Development Countries ([http://www.sandec.ch/ Sandec]) at the Swiss Federal Institute of Aquatic Science and Technology (Eawag). (Provides a full overview of sanitation systems.)
 
  
* Del Porto, D. and Steinfeld, C. (1999). The Composting Toilet System Book. A Practical Guide to Choosing, Planning and Maintaining Composting Toilet Systems, an Alternative to Sewer and Septic Systems. The Center for Ecological Pollution Prevention (CEPP), Massachusetts, USA.
+
* Morgan, P. R. (2009). [https://www.susana.org/en/knowledge-hub/resources-and-publications/library/details/989 Ecological Toilets. Start Simple and Upgrade from Arborloo to VIP]. Stockholm Environment Institute, Stockholm, SE.
  
* Jenkins, J. (1999). The Humanure Handbook: a Guide to Composting Human Manure. (2nd ed.). Jenkins Publishing, Grove City, Pa, USA. Available: http://www.jenkinspublishing.com
+
* NWP (2006). [https://www.susana.org/en/knowledge-hub/resources-and-publications/library/details/989 Smart Sanitation Solutions. Examples of Innovative, Low-Cost Technologies for Toilets, Collection, Transportation, Treatment and Use of Sanitation Products]. Netherlands Water Partnership, The Hague, NL.
  
* Morgan, P. (2004). An Ecological Approach to Sanitation in Africa: A Compilation of Experiences. Aquamor, Harare, Zimbabwe. Available: http://www.ecosanres.org
+
* Strande, L., Ronteltap, M. and Brdjanovic, D. (Eds.) (2014). [https://www.susana.org/en/knowledge-hub/resources-and-publications/library/details/3591 Faecal Sludge Management. Systems Approach for Implementation and Operation]. IWA Publishing, London, UK. (Detailed book compiling the current state of knowledge on all aspects related to FSM)
  
* Morgan, P. (2007). Toilets that make compost. Stockholm Environment Institute, Stockholm, Sweden. pp 81–90. Available: http://www.ecosanres.org
+
* WHO (2006). [https://www.who.int/water_sanitation_health/publications/gsuweg4/en/ Guidelines for the Safe Use of Wastewater, Excreta and Greywater. Volume 4: Excreta and Greywater Use in Agriculture]. World Health Organization, Geneva, CH.
  
* NWP (2006). Smart Sanitation Solutions. Examples of innovative, low-cost technologies for toilets, collection, transportation, treatment and use of sanitation products. Netherlands Water Partnership, The Netherlands. pp 49.
+
===Acknowledgements===
 +
{{:Acknowledgements Sanitation}}

Latest revision as of 03:03, 27 February 2021

English Français Español भारत മലയാളം தமிழ் 한국어 中國 Indonesia Japanese
Applicable in systems:
2, 3
Level of Application
Household XX
Neighbourhood XX
City X

 

Inputs
Compost, Pit Humus


Level of management
Household XX
Shared XX
Public X

 

Outputs
Biomass
Application of compost eco humus.png




Icon application of compost eco humus.png

Compost is the soil-like substance resulting from the controlled aerobic degradation of organics. Pit humus is the term used to describe the material removed from a double pit technology (S.4, S.5 or S.6) because it is produced passively underground and has a slightly different composition than compost. Both products can be used as soil conditioners.

The process of thermophilic composting generates heat (50 to 80 °C) which kills the majority of pathogens present. The composting process requires adequate carbon, nitrogen, moisture, and air. The Double VIP (S.4), Fossa Alterna (S.5) or Twin Pits for Pour Flush (S.6) are ambient-temperature variations of high-temperature composting. In these technologies, there is almost no increase in temperature because the conditions in the pit (oxygen, moisture, C:N ratio) are not optimized for composting processes to take place. Because of this, the material is not actually ‘compost’ and is, therefore, referred to as ‘pit humus’. The texture and quality of the pit humus depends on the materials which have been added to the excreta (e.g., soil added to a Fossa Alterna) and the storage conditions.

WHO guidelines on excreta use in agriculture stipulate that compost should achieve and maintain a temperature of 50 °C for at least one week before it is considered safe to use. Achieving this value, however, requires a significantly longer period of composting. For technologies that generate pit humus, a minimum of 1 year of storage is recommended to eliminate bacterial pathogens and reduce viruses and parasitic protozoa. WHO guidelines should be consulted for detailed information.

Design Considerations

It has been shown that the productivity of poor soil can be improved by applying equal parts compost and topsoil to it. The output from one Fossa Alterna should be sufficient for two 1.5 m by 3.5 m beds.

Advantages Disadvantages/limitations
- Can improve the structure and water-holding capacity of soil and reduce the use of chemical fertilizers

- May encourage income generation (improved yield and productivity of plants)
- Low risk of pathogen transmission
- Low costs

- May require a year or more of maturation

- Social acceptance may be low in some areas


Appropriateness

Compost and pit humus can be beneficially used to improve the quality of soil. They add nutrients and organics and improve the soil’s ability to store air and water. They can be mixed into the soil before crops are planted, used to start seedlings or indoor plants, or simply mixed into an existing compost pile for further treatment. Vegetable gardens filled with pit humus from the Fossa Alterna have shown dramatic improvements over gardens planted without soil conditioner. The use of pit humus has even made agriculture possible in areas which otherwise would not have supported crops.

Health Aspects/Acceptance

A small risk of pathogen transmission exists, but, if in doubt, any material removed from the pit or vault can be further composted in a regular compost heap before being used or mixed with additional soil and put into a ‘tree pit’, i.e., a nutrient-filled pit used for planting a tree. Compost and pit humus should not be applied to crops less than one month before they are harvested. This waiting period is especially important for crops that are consumed raw. As opposed to sludge, which can originate from a variety of domestic, chemical and industrial sources, compost and pit humus have very few chemical inputs. The only chemical sources that could contaminate compost or pit humus might originate from contaminated organic material (e.g., pesticides) or from chemicals that are excreted by humans (e.g., pharmaceutical residues).

Compared to the chemicals that may find their way into wastewater sludge, compost and pit humus can be considered as less contaminated. Compost and pit humus are inoffensive, earth-like products. Regardless, people might refrain from handling and using them. Conducting demonstration activities that promote hands-on experience can effectively show their non-offensive nature and their beneficial use.

Operation & Maintenance

The material must be allowed to adequately mature before being removed from the system. Then, it can be used without further treatment. Workers should wear appropriate protective clothing.

Field experiences


Akvorsr logo lite.png
RSR Project 464
Dutch WASH Alliance in Hararghe & Dire Dawa


Manuals, videos, and links

References

  • Del Porto, D. and Steinfeld, C. (1999). The Composting Toilet System Book. A Practical Guide to Choosing, Planning and Maintaining Composting Toilet Systems, an Alternative to Sewer and Septic Systems. The Center for Ecological Pollution Prevention (CEPP), Concord, MA, US. (Book)

Acknowledgements

Eawag compendium cover.png

The material on this page was adapted from:

Elizabeth Tilley, Lukas Ulrich, Christoph Lüthi, Philippe Reymond and Christian Zurbrügg (2014). Compendium of Sanitation Systems and Technologies, published by Sandec, the Department of Water and Sanitation in Developing Countries of Eawag, the Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.

The 2nd edition publication is available in English. French and Spanish are yet to come.