

Operations and Maintenance of SBR

& Management of STP O&M

Recommended Design Parameters

embetungan Nasional Anda

Your National Sewerage Company

Parameter	Unit	Continuous Fill and Intermittently Decant	Intermittently Fill and Intermittently Decant
No. of Reactors	Unit	Minimum 2	Minimum 2
Hydraulic retention time at Qavg (at average water level	hr	18 – 24	18 – 24
F/M Ratio	d-1	0.05 - 0.08	0.05 - 0.30
Sludge Age	D	20 – 30	10 – 30
Sludge Yield	kg sludge/ kg Load	0.75	0.75
MLSS (End of Decant)	mg/L	3,000 – 4,500	3,000 – 5,000
Cycle Time	Hr	4 – 8	4 – 8
Oxygen Required DO (Reactor) DO (Effluent)	mg/L mg/L	0 ~ 6.5 2.0	0 ~ 6.5 2.0
Minimum Settling Time (before start of decant)	Hr	> 0.6 for decant from TWL downward > 1.0 for fixed points decant	> 0.6 for decant from TWL downward > 1.0 for fixed points decant
Decant Time	Hr	≥ 1.0	≥ 1.0
Decant Depth	M	Max 1.0 (surface decant only)	max 1.5 (surface decant only)
Decant Volume	%	Not more than 25% of volume of Biological Reactor at TWL	Not more than 30% of volume of Biological Reactor at TWL
Decanting Device Loading Rate*	m ³ /m/hr	≤ 20 for decant from TWL & if SOR(decant) < 20 m³/m².d ≤ 15 for decant from TWL & if SOR(decant) < 30 m³/m².d ≤ 10 for fixed points decant regardless of SOR	≤ 20 for decant TWL & if SOR(decant) <20 m³/m².d ≤ 15 for decant from TWL & if SOR(decant) <30 m³/m².d ≤ 10 for fixed points decant regardless of SOR
WAS	Kg Sludge/d	$WAS = \frac{Total Solids in System}{Sludge Age}$	$WAS = \frac{Total Solids in System}{Sludge Age}$
Fill Volume	m ³	$V_{\text{fill}} = (Q_{\text{p}} \text{ m}^{3}/\text{hr x 1.5hr}) + (T_{\text{fill}} - 1.5) \text{ x } Q_{\text{AVG}}$ (if no EQ) $V_{\text{fill}} = Q_{\text{AVG}} \text{ x } T_{\text{fill}} \text{ (if preceded by EQ)}$	$\begin{aligned} V_{fill} &= (Q_p \text{ m}^3/\text{hr x 1.5hr}) + (T_{fill} - 1.5) \text{ x } Q_{AVG} \\ & \text{ (if no EQ)} \\ V_{fill} &= Q_{AVG} \text{ x } T_{fill} \text{ (if preceded by EQ)} \end{aligned}$

Summary of SBR Systems

Reviewed design of SBR System:

- Looked into emergence of SBR due to advent of PLC & controllable components and its beneficial uses;
- Described SBR process & its cycle charts;
- Identified various design considerations;
- Provided recommended design parameters;
- Evaluated benefits and draw backs of SBR system;
- Outlined variation of SBR by processes and by equipment;

Today's Topic ...

Outline of Contents

Your National Sewerage Company

□ Nut Shell of SBR System

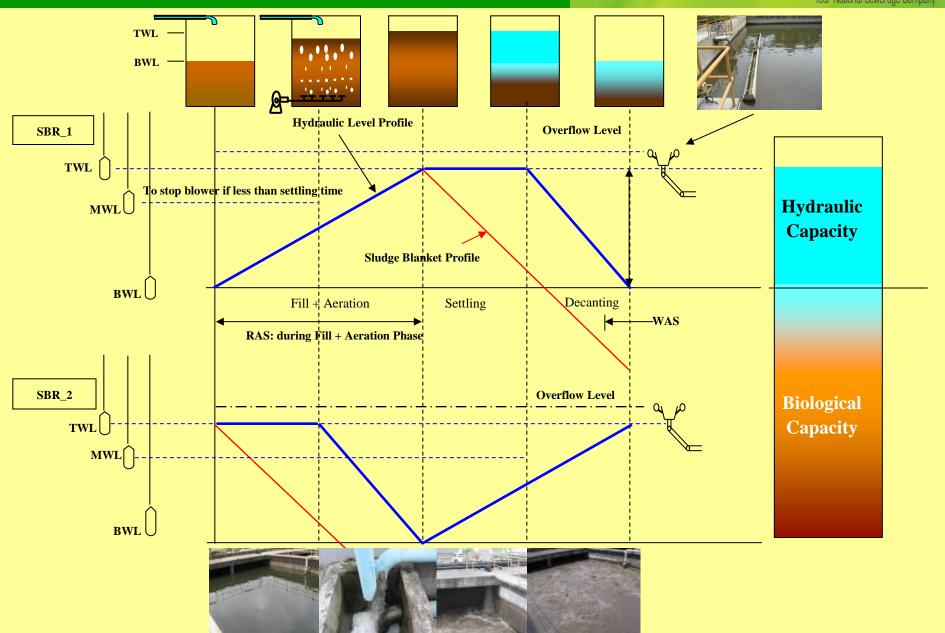
☐ Control Considerations for SBR System

☐ Type of O&M for SBR

☐ IWK Experience in managing O&M of

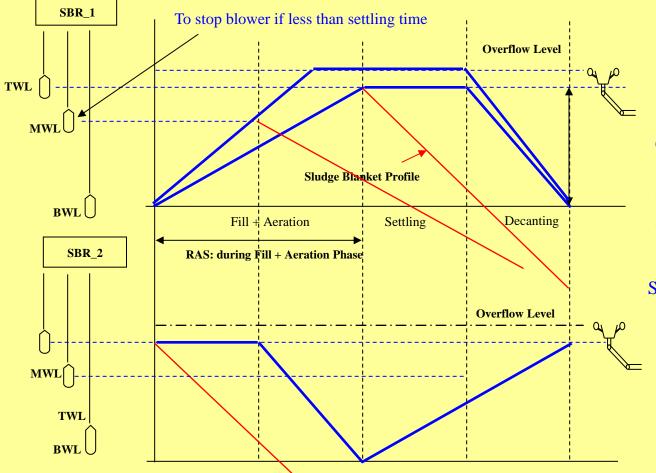
STP

Nut Shell of SBR Systems


In summary,

SBR: combined biological oxidation and clarification within the same reactor in alternative process sequence of cyclical mode.

SBR: emerged as <u>alternative</u> to continuous flow with following benefits:-


- Small land area requirements;
- Less unit processes; thus, less capital & O&M cost;
- Less labor since automated control by PLC's;
- Batch process equalized variation and shock hydraulic & organic load;
- Improve effluent quality: quiescent settling conditions;
- Many parameters removal in a single batch processes;

.

Nut Shell of SBR Systems

Your National Sewerage Company

Down stream equipment enlarged

When SBR equipment failure:

- Repair become "urgent"
- Replacement complicated

Operator: PLC control

- "faults" panic;
- blur on batch processes;
- Technicians need re-trained PLC literate;

Standardization: Variation equipment

Aeration capacity must also be increased due to aeration fraction ($t_{reaction} / t_{cycle}$) = 0.5 of the total cycle.

Fill		
React		
Settle		
Decant		

Fill		
React		
Settle		
Decant		

9	Fill		
1	React		
1	Settle		
	Decant		

Fill		
DAT		
IAT		
Settle		
Decant		

Outline of Contents

Your National Sewerage Company

☑ Nut Shell of SBR System

☐ Control Considerations for SBR System

☐ Type of O&M for SBR

☐ IWK Experience in managing O&M of

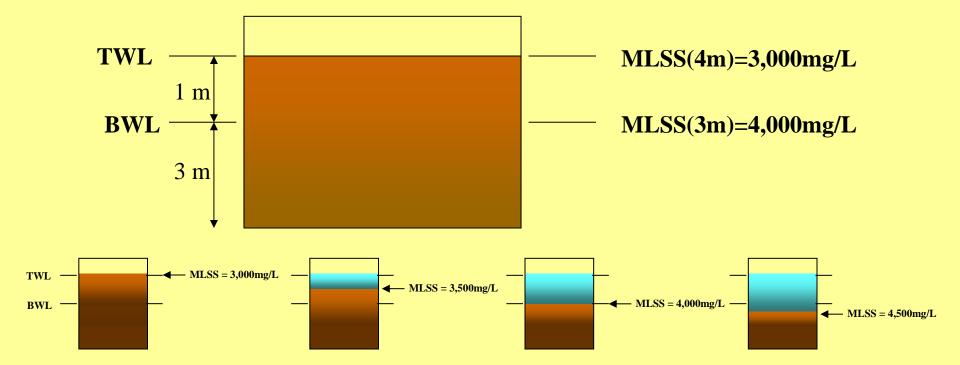
STP

O&M SBR: Control Parameters

Control consideration of SBR system from operator's point of view:-

- standardization of SBR design and equipment/components employed;
- Higher capacity per unit of time;
- Although the number of equipment has reduced, <u>urgency</u> of repair increased;
- Complexity of operational control increases proportionally with number of reactors and variation of process cycles, and type of equipment employed;
- Significant odor emission initial stage of aeration and proximity to public reduced;

O&M SBR: Control Parameters



Continue

- Power surges attenuation devices due to frequency start-stop requirement;
- More "sensors" to identify actual process cycles;
- Failure of these sensors could be critical to equipment or processes;
- Down stream process sizing significantly increases proportional to hydraulic decanted cycle

Process control parameters:-

- Conventional operating parameters for <u>continuous flow</u> processes can no longer simply adoptable to <u>batch</u> processes; (F/M, τ, Sludge age, cycle time)
- Important to note that <u>different water level gives different reading</u> for MLSS(h), SVI(h), D.O(h,t), & other readings;

Operator's (IWK) Prospective:-

Operational difficulties

- Sampling –wait till decanting;
- Training by system suppliers lack of operator's expectation;
- Variation of operating parameters function of time & level;

Control difficulties

- Failure of equipment—lack of flexibility to handle variation of control algorithms;
- Difficult to troubleshoot programming logic bugs;
- Proprietary design not possible to alter any variables; Inflexible.

Effluent compliance difficulties

- Non-true quiescent settling and decanting; (circulation motion due to momentum of fluid motion)
- Non-true hydraulic surge suppressant; (continuous feed during settling & decanting)

Practical Process control parameters:-

- Sludge Age
 - Total sludge / sludge wasted per day
- Color Observation :
 - light brown (young); brown (good); dark brown (old)
- Adjustable flexible time cycles and process time within cycle
 - Extend settling time to improve effluent quality;
 - Adjust aeration time for variation load;
 - Allow anoxic / anaerobic fill to improve nutrient removal;
- SVI
 - Adopt for <u>sludge wasting</u> strategy;
- PLC Reprogramming
 - Improve flexibility of control to handle various conditions:
 - High flow; equipment failures operation mode;

Outline of Contents

Your National Sewerage Company

- **☑** Nut Shell of SBR System
- **☑** Control Considerations for SBR System
- ☐ Type of O&M for SBR
- ☐ IWK Experience in managing O&M of

STP

Operations & Maintenance of SBR Plants: Overview

Treatment Services

- Safety
- Housekeeping
- Basic Maintenance M&E
- Process Optimization
- Minor Repair Works
- Record Measurements
- Sampling (Operational)
- Responsive Maintenance

M&E Services

- Basic Maintenance
- Responsive & Corrective Maintenance
- Planned Preventive Maintenance
- Service & Repair
- Procurement of Parts & Components
- Electrical Maintenance

Frequency of O&M Visitation (As Per OPI)

	Plant Type		Population Equivalent				
Type of Treatment Plant		0 – 500	501 – 2k	2001 – 10k	10,001 – 20k	>20k	
Communal Septic Tank	CST	1	1	1	1	1	
Communal Septic Tank + PS	CSTPS	4	8	12	20	20	
Non Mechanical Plant	IT, OP	2	4	4	8	8	
Non Mechanical Plant + PS	ITPS, OPPS	4	8	12	20	20	
Mechanical Plant Media	BD, BF, BS,	4	8	12	20	Manned	
Mechanical Plant Media + PS	RBC, TF	4	8	12	20	Plant	
Mechanical Plant Non-Media	AB, AL, AS, EA, LEA, IDEA, HK,	4	12	12	20	Manned	
Mechanical Plant Non-Media + PS	OD, SATS, SBR, UASB	4	12	12	20	Plant	
Network Pumping Station	NPS	4	4	8	8	12	

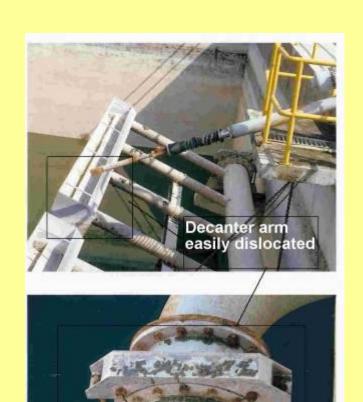
Syarikat Pembetungan Nasional Anda Your National Sewerage Company

Service & repair works:

SBR Decanter:

Repair of decanter shaft, shaft gear box and motor;

Aeration Device:


Repair / replace of diffusers, blowers, gear boxes, and others;

Actuators:

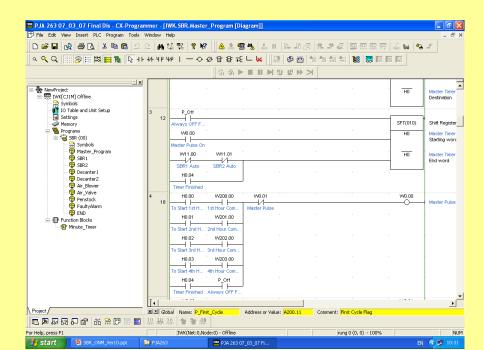
Repair / replace of actuator valves for air blowers, SBR feed valves, and RAS/WAS valves, etc..

Sensors:

Replace, adjustment and testing functionality of various sensors to/from ensure I/O to PLC is correct.

O&M: SBR System

Improvement Works: Control Panel, parts replacement, PLC re-programming



Improvement Works:

- Programming & installation of sensors;
- Re-programming to improve operability to cater various equipment breakdown handling procedures;
- Conversion of hard wired PLC control;
- Standardization of ladder logic programming;

- **☑** Nut Shell of SBR System
- **☑** Control Considerations for SBR System
- **☑** Type of O&M for SBR
- ☐ IWK Experience in managing O&M of

STP

STP in Malaysia:

- Largely dispersed or scattered on-site treatment works;
- Large distribution and high variation of sewerage systems;
- Large variation of treatment system within the similar treatment attributes;
- Rapid construction growth of sewerage treatment plants since 1999.

Operations & Maintenance Treatment Plants

Treatment Services

M&E Services

Routine Activities:

- Process Operation & Optimization
- Safety inspection / OPI visitation
- Housekeeping, Data Record or Measurements
- Basic M&E Maintenance

Schedule / Responsive Activities:

- Minor C&S / M&E Repair Works
- Sampling (Regulatory/Operational)
- Responsive Maintenance
- Attending to authorities, mass media, politicians, & internal inspections
- Attending to customer complaints

Schedule Activities:

- Planned Preventive Maintenance
- Procurement of Parts & Components
- Procurement of M&E services
- Arrangement & procurement: Term Contractors services

Responsive Activities:

- Responsive & Corrective Maintenance
- Minor Service & Repair for M&E

O&M: IWK Experience

arikat Pembetungan Nasional Anda

Your National Sewerage Company

Monthly Operational Inspections For STP and NPS

No.	Type of STP	Population Equivalent / Minimum Frequency Visitation per Month					
		0-500	501-2k	2,001-5k	5,001-10k	10,001-20k	>20,000
1	Non-Mechanised Plant (OP, IT)	2	4	4	4	4	-
2	Non-Mechanised Plant with M&E equipment (OPPS,ITPS)	4	4	8	8	8	12
3	Mechanised Plant with Media and M&E Equipment (RBC, BF,PEBF,TF, TFSC,BS,BD)	4	8	8	12	20	Manned Plant
4	Mechanised Plant with M&E equipment but without media (AL,AB,HK,LEA, SAT, AS, EA,OD,SBR,IDEA, SATS, UASB)	4	8	8	12	20	Manned Plant
5	Network Pumping Station	4	4	8	8	8	12

Source: Operations Instruction OPI/001

Operational Strategy for O&M Plants

• Outsourcing STP O&M:

- ground maintenance (grass cutting, cleaning works, etc);
- screenings cleaning & garbage disposal, sludge removal;

• IWK Teams:

- Process operation & optimization;
- Process control (SVI, D.O., sampling, etc.) & record
- General equipment PPM (greasing, replacement of consumables, etc.)

Outsource (Others):

- •Grass Cutting
- Security Services
- •Rubbished Disposal
- •Mechanical & Electrical Maintenance / repair
- •Supply Electrical Component, tools, consumables
- •Clear Sludge from Sand Drying Beds & Disposal
- •Minor repair Civil Works (inclusive of fencing repair, drain works, etc.)

Remarks on O&M Outsourcing

Item	Good O	Average Δ	Poor X	Notes / Remarks
Process knowledge			X	No formal training
Provision training			X	Unwilling to send operators to training due to their education background & being a foreigner.
Safety tools and gears		Δ		Moderate safety awareness; availability of safety gears are limited.
Communications skills Paper Works		Δ	X	Mostly operators with little education background. Poor in paper work (basically done by supervisors)
Knowledge of equipment			X	Poor knowledge of equipment maintenance
Responsive Works		Δ	X	O&M teams try to comply with visitation for claim purposes rather resolving responsive issues at hand
Pool resources		Δ	X	Limited to few big O&M contractors; others O&M contractors try to maximize profit;
Electrical / control system			X	Practically not knowledge in control systems;
Ground Maintenance & Cleaning Works	O			Contractors are more attentive to work;

- **☑** Nut Shell of SBR System
- **☑** Control Considerations for SBR System
- **☑** Type of O&M for SBR
- **☑ IWK Experience in managing O&M of STP**

O&M of SBR system

- Less labor operation but higher skills & knowledge required;
- Transient parameters must be adopted carefully: level and time dependence;
- SBR processes / equipment variation: need standardization, improvement of control algorithms to cater for equipment abnormal conditions;

Management of O&M of STP

- Considerations for logistic, frequency, size and types O&M;
- Consideration of operational strategies to overcome resources needed for proper O&M of STP to meet regulatory effluent compliances.